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Abstract: A new memory-reliable controller design for a class of discrete-time systems with time-varying input
delays is proposed. By assuming that the actuator fault obeys a certain probabilistic distribution, a new practical
actuator fault model is presented. Based on this fault model and the known past information, an augmented
system with time-varying delay or non-delay, similar to switched systems, is established. By using the Lyapunov–
Krasovskii approach, a sufficient condition for the existence of reliable controller is expressed by linear matrix
inequalities. An illustrative example is exploited to show the effectiveness of the proposed design procedures.
1 Introduction
It is well known that the time delays are ubiquitous in the
control systems. They usually enter because of the sensors
and actuators used in them and have been thought to have
a deleterious effect on both the stability and the
performance of controlled systems, and much research has
been done in attempting to eliminate them, compensate for
them or nullify their presence. Time delays can be generally
classified into two types: systems with state delays [1–5]
and systems with input delays [6–10].

From the above-mentioned references, it can be found that
most efforts on the memoryless state feedback controller
design for continuous-time systems (CTSs) and discrete-time
systems (DTSs). However, using the traditional method,
sometimes, cannot stabilise the system, as the example in
Remark 4, Section 2. As far as we know, few references
have been concerned with the memory controller design for
DTS with time-varying input delays under an assumption
that partial probabilities of input delays are known. In this
paper, we employ the partial past controller information and
the probabilities of the input delays to address the problem
of controller design for DTSs with stochastic input delay.
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However, all the aforementioned results are under a full
reliability assumption that all actuators are operational. In
fact, actuators play a very important role in control system,
which are responsible for transforming the controller
output to the plant, and how to preserve the closed-loop
control system performance under actuator fault condition
will be more meaningful. In practical situations, complete
failure or partial failure of actuators often occurs. The main
task of this study is to design a controller such that the
closed-loop system can maintain stability and performance,
not only when all control components are operational, but
also in case of some existing abnormal actuators including
fully outages. To the best of our knowledge, there are very
few papers dealing with the reliable control for the DTSs
with stochastic actuator failure and input delays. This
motivates the development of the so-called reliable control
theory.

Over the past few decades, the study of reliable control
problems becomes more and more practically meaningful
and has attracted considerable attention [11–18]. It is noted
that the reliable controller design methods in the
aforementioned literatures are all based on the assumption
that control component failures are modelled as outages, that
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is, when a failure occurs, the actuators signal simply becomes
zero. However, it cannot represent actuator failure exactly.
The actuator may not be complete failure, that is, the scale
factor ji = 0 is the simplest special cases. In practical
systems, because of actuators aging, zero shift,
electromagnetic interference, non-linear amplification in
different frequency field and so on, it will be more
reasonable that the fault-scale factor obeys a certain
probabilistic distribution in an interval. To the best of our
knowledge, it seems that there are no results on the problem
of reliable control with such an actuator fault model that
satisfies a certain probabilistic distribution. This motivates us
to further investigate the problem of reliable control systems
with stochastic input delays and actuator failures.

This paper concerns the problem of the memory-reliable
controller design for a class of DTSs with time-varying
input delays and stochastic actuator failures. The main
contributions of this paper are the following: (i) A more
general failure model is presented, which satisfies a certain
probabilistic distribution. (ii) By employing the past
controller information and the known partial probabilities of
the input delays, an augmented system with non-delays (the
original system is with constant input delay or with all
known probabilities input delays) or time-varying delays (the
original system is with partial known probabilities input
delays) is established. (iii) Based on those ideas, results for
the DTSs with constant input delay and all known
probability input delays are extended. Based on those new
models, memory-reliable controllers are designed, which can
maintain stability and performance, not only when all
control components are operational, but also in case of some
existing abnormal actuators including fully outages. An
illustrative example is exploited to demonstrate the
applicability of the proposed design approach.

Notation: Rn denotes the n-dimensional Euclidean space,
Rn×m is the set of real n × m matrices, I is the identity
matrix of appropriate dimensions, ‖.‖ stands for the
Euclidean vector norm or spectral norm as appropriate.
The notation X . 0 (respectively, X , 0), for X [ Rn×n

means that the matrix X is a real symmetric positive
definite (respectively, negative definite). When x is a
stochastic variable, E{x} stands for the expectation of x.
The asterisk ∗ in a matrix is used to denote the term that
is induced by symmetry. Matrices, if they are not explicitly
stated, are assumed to have compatible dimensions.

2 System description
In this paper, we consider a linear DTS with time-varying
input delays described by

x(k + 1) = Ax(k) + Bu(k − t(k)) (1)

x(k) = f(k), k = −tM , −tM + 1, . . . , 0 (2)

where x(k) [ Rn and u(k) [ Rm denote the state vector and
the control vector, respectively. A and B are known constant
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matrices with appropriate dimensions. f(k) is the initial
condition.

The actuator fault model is described by

u(k) = JKX (k)

=
∑m

i=1

jiCiKX (k) (3)

where X (k) = [xT(k) uT(k − h) · · · uT(k − 1)]T, J = diag
{j1 · · · jm} with ji(i = 1, . . . , m) being m unrelated
random variables. It is assumed that ji is with
mathematical expectation mi and variance s2

i , respectively,
and Ci = diag{ 0, . . . , 0︸���︷︷���︸

i−1

, 1, 0, . . . , 0︸���︷︷���︸
m−i

}.

Remark 1: There are some open literatures discussing
probabilistic sensor failures for the discrete systems. In
[19–23], the Bernoulli distributed variable g is used to
describe the sensors failure, wherein g ¼ 0 and 1 represent
the meaning of completely failure or completely normal. In
[24, 25], the authors assumed that the random variables g

taking values in the interval [0, 1], for 0 , g , 1, it means
partial failure. However, a fact has been omitted by most of
the researchers that when the sensors/actuators have faults,
it may result in backward or forward drift; in this case, the
sensors/actuators output might be bigger than the real
output, which is very normal in the practical systems;
however, it has not caused considerate attention up to now.

Remark 2: Equation (3) describes a phenomenon of
actuator drift by a random matrix J satisfying a certain
probabilistic distribution in an interval, ji belongs to the
interval [0, �j] with �j ≥ 1. For ji = 0, it means complete
failure of the ith actuator; for ji = 1, it means that the ith
actuator is in good working condition; for 0 , ji , 1, it
means partial failure of the ith actuator; for ji . 1, it
means the actuator-amplifier with forward drift. It should
be noted that, in many cases, the gain of actuators could be
larger than normal cases by reasons of the surrounding
influence or actuator–amplifiers themselves. Therefore the
mathematical expectation mi of random variance ji , similar
to the scaling factor in [26], should be defined as
0 , mi , �mi , where �m ≥ 1. Furthermore, si denotes the
gain of actuators’ fluctuation levels because of the influence
of all the factors acting on actuators.

Remark 3: mi = E{ji} represents the failure rate of the ith
actuator. It should be noted that with the consideration of
the influence of all the factors, mi = 1 does not mean that
the ith actuator is always in good working condition; the
values of zi can be bigger or smaller than 1. Similarly,
mi = 0 does not mean in the complete failure of the ith
actuator. In particular, If the case mi = 0, and si = 0,
simultaneity, it stands for an entire missing of signals, and
if mi = 1, si = 0 indicates intactness. In fact, actuator–
amplifiers backward or forward drift usually occurs in
39
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practice situations, while completely failure and intactness are
only two special cases.

Remark 4: The controller we usually used is memoryless,
that is, u(k) = K̂ x(k); however, in some cases, the system
cannot be stabilised whatever the value of the controller
gain takes. For example, for system (1), if we select
A = 1, B = 1, u(k) = K̂ x(k), t(k) ¼ 1, that is

x(k + 1) = 3x(k) + K̂ x(k − 1) (4)

Obviously, system (4) cannot be stabilised by using the
traditional state feedback method whatever the value of K̂
takes, which motivates us to find a novel controller to
address this problem. In this paper, the controllers past
information are introduced into the new controller (3),
which can address this problem.

Owing to the introduction of the augmented vector X(k),
the system (1) under the reliable controller (3) can be
rewritten as follows: if we take the input delay
t(k) = 1, . . . , h, and dk + h, where dk = t(k) − h when
t(k) ≥ h, respectively

X (k + 1) = A1X (k) + B1u(k)

..

. ..
.

X (k + 1) = AhX (k) + B1u(k)

X (k + 1) = AbX (k) + B2X (k − dk)

where

Ai =

︷������︸︸������︷i

A 0 B · · · 0

0 0 I · · · 0

· · · · · · · · · . .
.

· · ·
0 0 0 · · · I

0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ab =

A 0 0 · · · 0

0 0 I · · · 0

· · · · · · · · · . .
.

· · ·
0 0 0 · · · I

0 0 0 · · · 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

B1 =

0
0
· · ·
0
I

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, B2 =

0 B 0 · · · 0
0 0 0 · · · 0
· · · · · · · · · · · · . . .

0 0 0 . . . 0
0 0 0 . . . 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

i = 1 · · · h

In this paper, the probability of the random delay taking
some value is assumed to be known. In order to employ
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these information in the system model, the following
definition and assumption are needed.

Defining stochastic variables ai(k) and b(k) as

ai(k) = 1, tk = i
0, tk = i

{
, i = 1, 2, . . . , h (5)

b(k) = 1, tk . h
0, tk ≤ h

{
(6)

Assumption 1: E{ai(k)} = E{a2
i (k)} = ai, E{b(k)} =

E{b2(k)} = b and
∑h

i=1 ai(k) + b = 1, that is, ai and b

are the probabilities of Prob{t(k) = i}, i = 1, 2, . . . , h and
Prob{t(k) . h}.

Then, the system (1) can be rewritten as

X (k + 1) =
∑h

i=1

ai(k){AiX (k) + B1u(k)}

+ b(k){Ab(k)X (k) + B2X (k − dk)} (7)

where 0 ≤ dk = (t(k) − h) ≤ dM .

From the definition of the reliable controller (3), the
system (7) can be further rewritten as

X (k+1)=

∑h

i=1

aikAi +b(k)Ab+B1J0K +B1(J(k)−J0)K

( )
X (k)

+b(k)B2X (k−dk) (8)

Remark 5: In most practical systems, the variation range of
the delay is large, and the probability of delay taking large
values is usually very little. we can obtain the probability
distribution of the partial delays with big probability. With
this modelling method, the probability distribution of the
delay is added to the parameters of the system; thus more
information is utilised, which can be expected to reduce the
conservatism and obtain a better control effect.

The objective of this study is to develop a reliable controller
for the closed-loop system with the stochastic fault model
described by (3). For this purpose, the following lemmas
and definitions are introduced.

Lemma 1 [27]: Suppose M, N and C are constant matrices
of appropriate dimensions. Then

(d (k) − dm)M + (dM − d (k))N +C , 0 (9)
IET Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 38–46
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is true for any d (k) [ [dm dM ], if and only if

(dM − dm)M +C , 0 (10)

(dM − dm)N +C , 0 (11)

3 Main result
The following theorem provides the stability criteria for
system (8) with the reliable controller (3).

Theorem 1: For given scalars mi . 0 and si . 0
(i = 1, . . . , m), the system (8) is exponentially mean-square
stable, if there exist matrices P . 0, Q . 0, R . 0, N, M
with appropriate dimensions such that the following matrix
inequalities hold

V11 V12 V13

����
dM

√
M

∗ V22 0 0
∗ ∗ V33 0
∗ ∗ ∗ −R

⎡
⎢⎢⎣

⎤
⎥⎥⎦ , 0 (12)

V11 V12 V13

����
dM

√
N

∗ V22 0 0
∗ ∗ V33 0
∗ ∗ ∗ −R

⎡
⎢⎢⎣

⎤
⎥⎥⎦ , 0 (13)

where

V11 =
V bPB2+M1−N1+N T

2 −M1+N T
3

∗ M2+MT
2 −N2−N T

2 −Q −M2+MT
3 −N T

3

∗ ∗ −M3−MT
3

⎡
⎢⎣

⎤
⎥⎦

V12 =���
a1

√
(A1+B1J0K − I )TR̃ · ·· ���

ah
√

(Ah+B1J0K − I )TR̃

0 · ·· 0

0 · ·· 0

⎡
⎢⎣

��
b

√
(Ab+B1J0K − I )TR̃��

b
√

BT
2 R̃

0

⎤
⎥⎦

V22 =diag{−R̃ − R̃ ··· − R̃︸��������︷︷��������︸
h+1

}, R̃=P +dM R

V13 =
s1K TCT

1 BT
1 R̃ · ·· smK TCT

mBT
1 R̃

0 · ·· 0
0 · ·· 0

⎡
⎣

⎤
⎦

V33 =diag{−R̃ − R̃ ·· · − R̃︸��������︷︷��������︸
m

}

V=P
∑h

i=1

aiAi +
∑h

i=1

aiA
T
i P +PbAb+bAT

b P −2P

+PB1J0K + (B1J0K )TP +Q+N1+N T
1

J0 =diag{m1 · ··mm}
T Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 38–46
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Proof: The Lyapunov functional is constructed as

V (k)=X T(k)PX (k) +
∑k−1

i=k−dM

X T(i)QX (i)

+
∑−1

i=−dM

∑k−1

j=k+i

yT( j)Ry( j) (14)

where P . 0, Q . 0, R . 0 and y(k) ¼ X(k + 1) 2 X(k).
Defining X (k)= {X (k), X (k−1), . . . , X (k−h))}, then
calculating the difference of V (k) along the system (8) and
taking the mathematical expectation, we have

E{DV (k)|X (k)}

=E{yT(k)Py(k)2X T(k)P

×
∑h

i=1

aiAi +bAb+B1J0K − I

[ ]
X (k)

+2X T(k)PbB2X (k−dk)+X T(k)QX (k)

−X T(k−dM )QX (k−dM )

+dM yT(k)Ry(k)−
∑k−1

i=k−dM

yT(i)Ry(i)

}
(15)

Note that

E{yT(k)R̃y(k)}

=X T(k)
∑h

i=1

aiA
T
i R̃Ai+2

∑h

i=1

aiA
T
i R̃(B1J0K −I )+bAT

b R̃Ab

{

+(B1J0K −I )TR̃(B1J0K −I )+2bAT
b R̃(B1J0K −I )

+
∑m

i=1

s2
i (B1CiK )TR̃(B1CiK )

}
X (k)

+2X T(k){b(Ab+B1J0K −I )TR̃B2}X (k−dk)

+X T(k−dk)bBT
2 R̃B2X (k−dk)

=X T(k)
∑h

i=1

ai(Ai+B1J0K −I )TR̃(Ai+B1J0K −I )X (k)

+X T(k)
∑m

i=1

s2
i (B1CiK )TR̃(B1CiK )X (k)

+bX T(k){(Ab+B1J0K −I )TR̃(Ab+B1J0K −I )X (k)

+X T(k)2(Ab+B1J0K −I )TR̃B2X (k−dk)

+X T(k)2(Ab+B1J0K −I )TR̃B2X (k−dk)

+X T(k−dk)B
T
2 R̃B2X (k−dk)} (16)

For matrices N and M with appropriate dimensions, the
41
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following equations hold obviously

2zT(k)N X (k)−X (k−dk)−
∑k−1

i=k−dk

y(i)

[ ]
=0 (17)

2zT(k)M X (k−dk)−X (k−dM )−
∑k−dk−1

i=k−dM

y(i)

[ ]
=0 (18)

where zT(k)=[X T(k)X T(k−dk)X T(k−dM )].

−2zT(k)N
∑k−1

i=k−dk

y(i)≤dkz
T(k)NR−1N Tz(k)

+
∑k−1

i=k−dk

yT(i)Ry(i) (19)

−2zT(k)M
∑k−dk−1

i=k−dM

y(i)≤(dM −dk)z
T(k)MR−1N Tz(k)

+
∑k−dk−1

i=k−dM

yT(i)Ry(i) (20)

Substituting (16) into (15) and according to (17)–(20), we
obtain

E{DV (k)|X (k)}

≤2X T(k)P
∑h

i=1

aiAi +bAb+B1J0K − I

( )
X (k)

+2X T(k)PbB2X (k−dk)+X T(k)QX (k)

+−X T(k−dM )QX (k−dM )

+X T(k)
∑h

i=1

ai(Ai +B1J0K − I )TR̃(Ai +B1J0K − I )X (k)

+2zT(k){N [X (k)−X (k−dk)]

+M[X (k−dk)−X (k−dM )]}z(k)

+dkz
T(k)NR−1N Tz(k)

+ (dM −dk)z
T(k)MR−1N Tz(k)

+X T(k)
∑m

i=1

s2
i (B1CiK )TR̃(B1CiK )X (k)

+bX T(k){(Ab+B1J0K − I )TR̃(Ab+B1J0K − I )X (k)

+X T(k)2(Ab+B1J0K − I )TR̃B2X (k−dk)

+X T(k−dk)B
T
2 R̃B2X (k−dk)}

That is

E{DV (k)|X (k)}≤ zT(k)Pz(k)

where P=V11+VT
12V

−1
22 V12 +VT

13V
−1
33 V13+dkNR−1

2 N T+
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(dM −dk)MR−1
2 MT, by using Lemma 1, we can easily know

P , 0, if

V11+V
T
12V

−1
22 V12+V

T
13V

−1
33 V13

����
dM

√
M

∗ −R

[ ]
, 0 (21)

V11+VT
12V

−1
22 V12+VT

13V
−1
33 V13

����
dM

√
N

∗ −R

[ ]
, 0 (22)

hold, by using Schur complement, (12) and (13) are
equivalent to (21) and (22), respectively. Similar to [28,
24], we can know

{DV (k)|X (k)} ,−lmin(P)|z(k)|2 (23)

where lmin is the minimum eigenvalue of P. Finally, we can
confirm that the augmented systems (8) is exponentially
mean-square stable. This completes the proof. A

Based on Theorem 1, the gain K of controller (3) can be
designed using the following theorem.

Theorem 2: For given scalars mi . 0 and si . 0
(i = 1, . . . , m), the system (8) with K = YX−1 is
exponentially mean-square stable, if there exist scalars
r . 0, and matrix X . 0, Q̂ . 0, N̂ , M̂ with appropriate
dimensions such that

V̂11 V̂12 V̂13 V̂14

����
dM

√
M̂

∗ V̂22 0 0 0
∗ ∗ −X 0 0
∗ ∗ 0 V̂44 0
∗ ∗ ∗ ∗ −rX

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ , 0 (24)

V̂11 V̂12 V̂13 V̂14

����
dM

√
N̂

∗ V̂22 0 0 0
∗ ∗ −X 0 0
∗ ∗ 0 V̂44 0
∗ ∗ ∗ ∗ −rX

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ , 0 (25)

where

V̂11 =
V̂ bB2X +M̂1 − N̂ 1 + N̂

T

2 −M̂1 + N̂
T

3

∗ M̂2 +M̂
T

2 − N̂ 2 − N̂
T

2 − Q̂ −M̂2 +M̂
T

3 − N̂
T

3

∗ ∗ −M̂3 −M̂
T

3

⎡
⎢⎢⎣

⎤
⎥⎥⎦
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V12 =

��������������
a1(1+dMr)

√
[X (A1 − I )T +Y TET

0 BT
1 ] · · ·

0 · · ·
0 · · ·

⎡
⎢⎣
��������������
ah(1+dMr)

√
[X (Ah − I )T +Y TET

0 BT
1 ]

0

0

⎤
⎥⎦

V13 =

�������������
b(1+dMr)

√
[X (Ab− I )T +Y TET

0 BT
1 ]�������������

b(1+dMr)
√

XBT
2

0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

V̂22 = diag{−X ··· −X︸������︷︷������︸
h

}

V̂14 =

���������
1+dMr

√
s1Y TCT

1 BT
1 · · ·

���������
1+dMr

√
smY TCT

mBT
1

0 · · · 0

0 · · · 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

V̂44 = diag{−X ··· −X︸������︷︷������︸
m

}

V̂=
∑h

i=1

aiAiX +
∑h

i=1

aiXAT
i +bAbX +bXAT

b

−2X +B1J0Y +Y TJ
T
0 BT

1 + Q̂+ N̂ 1 + N̂
T

1

Proof: Defining X =P−1, R ¼ rP, M̂ =XMX ,
N̂ =XNX , and Y =KX , pre-, post-multiplying both sides
of (12) and (13), respectively with
diag{X ,X ,X , −V22,X , −V44}, we can obtain (24) and
(25). This completes the proof. A

By using the similar modelling method, we can also
address the problem of the system with constant input
delay. Assuming that the input delay is a constant h, then
the closed-loop system (1) with the reliable controller (3)
can be converted as the system without any time delay, that is

X (k + 1) = (Ah + B1JK )X (k)

= [(Ah + B1J0K ) + B1(J−J0)K ]X (k) (26)

Corollary 1: For given scalars mi . 0 and si . 0
(i = 1, . . . , m) the system (26) with K = YX−1 is
exponentially mean-square stable, if there exist matrix
X . 0 with appropriate dimensions such that

−X XAT
h + Y TJ

T
BT

1 s1Y TCT
1 BT

1 · · · smY TCT
m BT

1

∗ −X 0 · · · 0

∗ ∗ −X 0

∗ ∗ ∗ . .
.

0

∗ ∗ ∗ ∗ −X

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, 0 (27)
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Proof: Construct the Lyapunov function

V (k) = X T(k)PX (k) (28)

Calculating the difference of V (k) along the system (26) and
taking the mathematical expectation, we have

E{DV (k+ 1), k)} = X T(k)P̃X (k) (29)

where P̃= {(Ah +B1J0K )TP(Ah +B1J0K ) +
∑m

i=1

s2
i (B1CiK )TPB1CiK − P}, By Schur complement, we can

know that

−P (Ah + BJ0K )TP (s1C1K )TP · · · (smC1K )TP

∗ −P 0 · · · 0

∗ ∗ −P · · · 0

∗ ∗ ∗ · · · −P

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

, 0 (30)

is equivalent to P̃ , 0. Defining X = P−1 and Y = KX , and
pre-, post-multiplying both sides of (27) with
diag{ P, . . . , P︸���︷︷���︸

m+2

}, we can obtain that P , 0. Subsequently

{DV (k)|X (k)} , −l̃min(P̃)|X (k)|2 (31)

where l̃min is the minimum eigenvalue of P̃. That is, filtering
systems (26) are exponentially mean-square stable. This
completes the proof. A

Next, we will discuss another special case, that is, when
the input delay is time varying, but the range of them is
small. Furthermore, we can obtain their every probabilities.
Then by designing u(k) = JKX (k), where X (k) =
[xT(k) uT(k − h) · · · uT(k − 1)]T and h is the up-bound of
the input delay t(k), we have

X (k + 1) =
∑h

i=1

aiAiX (k) + B1JKX (k)

=
∑h

i=1

aiAi + B1J0K + B1(J−J0)K

[ ]
X (k)

(32)

Corollary 2: For given scalars mi . 0 and si . 0
(i = 1, . . . , m) the system (32) with K = YX−1 is
exponentially mean-square stable, if there exist matrix
X . 0 with appropriate dimensions such that

−X Y12 Y13

∗ −X h 0
∗ ∗ −Xm

⎡
⎣

⎤
⎦ , 0 (33)
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where

Y12 = [a1XAT
1 + Y TJ

T
0 BT

1 · · · ahXAT
h + Y TJ

T
0 BT

1 ]

Y13 = [s1Y TCT
1 BT

1 · · · smY TCT
m BT

1 ]

{X〈 = ⌈〉⊣}{X · · · X︸���︷︷���︸
〈

}

Xm = diag{X · · · X︸���︷︷���︸
m

}

Proof: The proof is similar to Corollary 1; this is omitted
here. This completes the proof. A

4 Illustrative example
In this section, a well-studied example is used to illustrate the
the effectiveness of the approaches proposed in this paper.

Consider the following DTS (1) with the following
parameters

A = 1.1 2
0 1.02

[ ]
, B = 0.5 1

−1 2

[ ]

and 1 ≤ t(k) ≤ 6, and the initial conditions
x(0) = [ − 1 1]T. Suppose we have known the first 3 delay
probabilities, that is, h ¼ 3 and a1 = 0.3, a2 = 0.3,
a3 = 0.2 and b ¼ 0.2.

Case 1: We assume that the actuators are normal, that is,
the parameter j of fault model (3) has expectation mi = 1
and variance si = 0 (i ¼ 1, 2), respectively. According to
Theorem 2, we obtain the standard controller Ks (see (34))

Figure 1 Stochastic input delay
The Institution of Engineering and Technology 2011
Case 2: Assuming that the actuator fault distribution are given

by J0 = 0.5 0
0 1

[ ]
, s1 = 0.2, s2 = 0.1, that is, there exist

partial actuator failure and fluctuations. According to
Theorem 2, we obtain the reliable controller Kr (see (35))

The stochastic input delay is depicted in Fig. 1. Figs. 2 and 3
show the state response for the standard fuzzy control
design and reliable control, respectively. It is clear that both
the controllers perform very satisfactorily when no failures
occur. When the actuator is abnormal, which is described
by Case 2, the state responses for the standard and the
reliable controllers are shown in Figs. 4 and 5, respectively.
It is observed that when the actuator fault occur, the
closed-loop system with the standard controller is not even
asymptotically stable, whereas the closed-loop system using

Figure 2 Standard controller for systems without failure

Figure 3 Reliable controller for systems without failure
Ks =
−0.1490 −0.9652 0.1487 −0.3265 0.3129 −1.0204 0.6936 −0.4794
−0.0744 −0.5386 0.0773 −0.1691 0.2505 −0.6992 0.1267 0.2032

[ ]
(34)

Kr =
0.0008 0.0192 −0.0018 0.0038 −0.0255 0.0507 0.0645 −0.1081
−0.0039 −0.0775 0.0067 −0.0141 0.0956 −0.2023 −0.1879 0.4038

[ ]
(35)
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the reliable controller still operates well and maintains an
acceptable level of performance.

5 Conclusion
In this paper, a new fault model and design method for the
DTSs with input delays are proposed. First, we assume that
the actuators fault obeys a certain probability distribution;
the stochastic fault model is established. Then, the original
system is transformed into an augmented system with non-
delays or time-varying delays by employing the past
controller information. Based on this new model, reliable
controllers are designed to achieve a less conservative result,
not only when the system is operating properly, but also in
the presence of certain actuator failures. Numerical
examples are provided to illustrate the design procedures.
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